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Evaluating the Effect of the North Delta Diversion on Flo
Reversals and Entrainment of Juvedilenook Salmon
Into Georgiana Slough and the Delta Cross Channel

ByRussell W. Perry, Jason G. Romine, Adam C. Pope, and Scott D. Evans

Executive Summary

The California Department of Water Resources and US Bureau of Reclamation propose new
water intake facilities on the Sacramento River that would route water through tunnels rather than
through theéSacramentd&san Joaquibelta. The collection of water irkkas, tunnels, pumping facilities,
associated structureand proposed operations are collectively referoeaist California Water Fix (ICF
International, 2016). The water intake facilitiesferred to here as the North Delta DivergNDD),
are proposetb be located on the Sacramento River downstream of the city of Sacramento but upstrean
of the first major river junction where Sutter Slough branches from the Sacramento River. The North
Delta Diversion can divert a maximum discharge of 9,088 ftomthe Sacramento River, which
reduces the amount of inflow into the Delta.

In this report, we conduct two analyses to investigate the effect of the North Delta Diversion and
its proposed operation on entrainment of juve@ienooksalmon(Oncorhynchus tshaytscha into
Georgiana Slough and the Delta Cross Channel. Fish that enter the interior Delta (the network of
channels to the south of the Sacramento River) via Georgiana Slough and the Delta Cross Channel
survive at lower rates than fishettuse othemigration routes (Sacramento River, Sutter Slough, and
Steamboat Slough; Perry and others 20T0)erefore, of concern is the extent to which operation of the
North Delta Diversion increases the proportion of the population entering the interior Déita, wh
would lower overall survival through the Delta by increasing the fraction of the population subject to
lower survival rates.

In the first analysis, we evaluate the effect ofMi#D bypass rules on flow reversals of the
Sacramento River below GeorgiaBmugh. TheNDD bypass rules are a set of operational criteria
designedo minimize upstream transport of fish into Georgiana Slough and Delta Cross Channel, and
were developed based on previous studies showing that the magnitude and duration oéfkalsrev
increase the proportion of fish entering Georgiana Slough and the Delta Cross Channel (Perry and
others, 2015; Perry, 2010). We estimated the frequency and duration of ffémersenditions of the
Sacramento River downstream of Georgiana Slouglemeach of the prescribed minimum bypass
flows described in the NDD bypass rules. To accommodate adaptive levels of protection during
different times of year when juvenile salmon are migrating through the Delta, the NDD bypass rules
prescribe a series afinimum allowable bypass flows that vary dependingl) month of the year and
2) progressively decreasing levels of protection following a pulse flow event.

We found that the NDD bypass rulesreasedhe frequency and duration of reverse flows of
the Sacramento River downstream of Georgiana Slough, with the magnitude of increase varying among
scenarios Constant lowevel pumping, the most protective bypass thh limits diversion to 10% of
the maximum diversion and is implemented following a pill®& event led to the smallest increase in



frequency and duration of flow reversals. In contnastfound that some scenarios led to sizeable
increases in the fraction of the day with reverse flow. The conditions under which the proportion of the
day wth reverse flow can increase b0 percentage points between October and June, when juvenile
salmon are present in the Delta, include Ocfiddevember bypass rules and level 3 posise

operations from December through Juiithese conditions would be expected to increase the

proportion of juvenile salmon enteritige interior Delta vi&Georgiana Slough.

In the second analysigie evaluated the effect of the North Delta Diversion on the daily
probability of fish entering Georgna Slough and Delta Cross Channel. We applied the entrainment
probability model of Perry and others (2015) teriiiute flow data for an 8gear time series of flows
simulated by DSM2 (Delta Simulation Model 2) untlez Proposed ActiorfPA) andthe No Action
Alternative (NAA). To estimate the daily fraction of fish entering each river channel, entrainment
probabilities were averaged over each day. To evaluate the two scenarios, we then compared mean
annual entrainment probabilities by month, water passification, and three different assumed run
timings.

Effect otheNorth Delta Diversion Bypass Rules on Flow Revetisal of
Sacramento River bel@eorgiana Slough

Introduction

This analysis investigates the effectshad North Delta Diversion (ND) bypassules (Table
3.4.72in DWR, 2013 on the frequency and duration of reverse flows of the Sacramento below
Georgiana Slough. One goal of the NDD bypass rules is to provide bypass flows thatgrevent
increase irupstream transport of fish intoe@rgiana Sloughnd the Delta Cross ChangBICC).

Bypass flows are defined #sw remaining in the Sacramento River downstream of the North Delta
Diversion. These rules were developed based m@vipus researchAnd understanding of reveriew
hydrodynamicsat this riverjunction. Research hashown thathe entrainment probabilityf juvenile
Chinooksalmon(Oncorhynchus tshawytschiato Georgiana Slougand the Delta Cross Channel
highest during reversiow flood tides (Perry and others, 2013jurthermorethe daily proportion of

fish entrained into Georgiana Slough increases with the fraction of tha dagverse flonconditionat
the Sacramento River downstream of Georgiana Sl¢Reiry, 2010) Consequently, diverting water
from the Saramento River could increase the frequency and duration of refl@rseonditions,

thereby reducing survival by increasing the proportion of fish entrained into the interior Delta where
survival probabilities are lower thamthe Sacramento River (Perand others, 2010, 2013).

The NDD bypass rules are also designed to provide more protection during times of the year
when juvenile salmon populations are actively migratimgugh the Deltdprimarily December
through Juneand during pulse flow events wh endangered winteun Chinook salmon are likely to
initiate downstream migration into the Delta (del Rosario and others, 2013). To accommodate adaptive
levels of protection, the NDD bypass rules prescribe a series of minimum allowable bypasisatows t
vary depending on 1) month of the year and 2) progressively decreasing levels of protection following a
pulse flow event.For modeling purposesufseevents are defined based on discharge of the
Sacramento River at Wilkins Slough, and minimum bypassdeare based on varying fractions of
discharge of the Sacramento River arrivinghatNorth Delta Diversion (sééble 3.4.12 in DWR,

2013 for details)For operational purposes, pulse evamit$ be based on monitoring for the presence of
winter-run szedfish enteringthe reach.



Our goal was to estimate the frequency and duration of reflevgeonditions of the
Sacramento River downstream of Georgiana Slough under each of the prescribed minimum bypass
flows described in the NDD bypass rules TableI32. First, we used historical flow data of the
Sacramento River downstream of Georgiana Slough (WGB; USGS1344&90% to estimate the
effect of dischargef the Sacramento River at Freeport (FPT; USGS Gadd 7650 on 1) the daily
probability of a flow reversal, and 2) the daily proportion of each day with reverse flow. We then used
these relationships to calculate the changéenprobability of a flow reversal and the proportion of the
daywith reverse flow under each of the prescribed bypass flows described in the NDD bypass rules.
This analysis assumes that 1) the NDD bypass anteapplied based on mean daily discharge at
Freeportand 2) that water is diverted at a constant discharge over an entire day such that the bypass
flow is constant over the day. In other words, we assuméhilaypass is operated as strictly defined
by the NDD bypass rul es. We do not attempt to
diversion flow at hourly timescales in response to in situ tidal conditions to prevent reverse flows. Such
reattime management criteria have yet to be defiaed, we therefore expand on this topic in the
discussion.

Methods

We used logistic regression to quantify the relationship between Sacrdriesttmflows to the
Delta and reverse flows of the SacrameRicer downstream of Georgiana Slough. Mean daily
discharge at Freepoit5-min discharge data at station WGhd the daily position of the Delta Cross
ChannelDCC) gatefor the period October 2007 to March 204&reused in the analysis. The-b&in
data at WGB was summarized to two daily statisticat linary indicator valuthat was set to one if
reverse flow occurred at any point on a given day and set to zero ifmlinlffows were positive, and
2) the number of Hnin flow observations for each day that were negatiMee position of the DCC
gate was coded as a binary indicator variable (1 = open, 0 = closed) for inclusion in the abaliess.
without a complete record of 48in flows at WGB or where the DCC gate was not open or closed for
the entire day were excluded from the analysis.

To egimate the probability of a flow reversal occurring on a given day, we fit a logistic
regressionmodel to the binary indicator variable described above as a function of daily flow at Freeport:

P(reverse) = logit(ao + a1Qrp7)
where logit! is the inverséogit function,Qreris mean daily discharge at Freepaujs the intercept,
anda is the slope.We excluded the DCC gate position from this analysis besaeigeundthatflow
reversals always occurred for some part of the day when the DCC wag.epd¥(reverse) = 1 for
DCC open). Thesfore, the analysis was restricted to days when the DCC was closed.

To estimate the proportion of the day with reverse flow as a function of Freeport flow, we fit a
logistic regression model to the number ofriiin reverse flowsn each day relative to the total number
15-min flow observations each day:

Paay(reverse) = logit(bo + b1Qrp7)
wherebg is the intercept anb; is the slope.This analysis was conducted separately for periods with the
DCC gate open and closed.

Given the relationships estimating the effect of Freeport discharge on the fre(fa@eugrse))
and duratior{P4ay(reverse)pf flow reversals, we applied the bypaskes over a range of Freeport
discharge from 5,000 to 35,008/, which bracketed flows under which we observed a 100%
probability of a flow reversal to a 0% probability of a flow reversal. We compared the probability of
flow reversal and the propaota of the day with flow reversals assuming no diversion and dorersi
under the NDD bypass rules with the DCC clos@fk then calculated the difference in these statistics


http://waterdata.usgs.gov/ca/nwis/uv/?site_no=11447905&PARAmeter_cd=00065,00060
http://waterdata.usgs.gov/usa/nwis/uv?site_no=11447650

between no diversion and that prescribed under the NDD bypass rules to assespittuslenof
increase in the frequency and duration of reverse fl@&ycifically, we performed this comparison for
the 12 scenarios described under the NDD bypass rules:

1) Constant lowlevel pumping

2) Octobeil Novemberbypass rules

3) Level 1, 2, and 3 pogiulse operations for Dexnber April

4) Level 1, 2, and 3 pogiulse operations for May

5) Level 1, 2, and 3 pogiulse operations for Jan

6) Julyi Segemberbypass rules

Results

We foundthe probability of a flow reversal declined from one at about 12,5G0tdt zercat
about 22,500 ffs (fig. 1). We found that the proportion of day with negative flow was aboped®nt
at a Freeport discharge of about 6,068 ftegardless of the DCC gate posititig.(2). HoweverDCC
gate position had a strong effect on tage of change in the proportion of the day with reverse flows
(table 1). As Freeport discharge increased over 6,098, fthe fraction of the day with reverse flows
decreased much more sharply with the DCC closed relative to(bgeh).

Table 1. Parameter estates for the three logistic regression models used to estimate frequency and dut
flow reversals of the Sacramento River downstream of Georgiana Slough as a function of mean daily d

Freeport.
[DCC, Delta Cross Channel; SE, standard e probability]

Response variable DCC position Intercept (SE) Slope (SE)
P(reverse) Closed 17.92 (1.567) -1.017e03 (9.001€05)
Paayreverse) Closed 0.13 (0.022) -5.837e05 (1.600€06)

Open 1.37 (0.027) -2.409e04 (2.477€06)

We found thathe NDD bypass rules, as implemented under the assumptions of our simulation,
increasedhe frequency and duration of reverse flows of the Sacramento River downstream of
Georgiana Slough, with the magnitude of increase varying among sceifigso8 13). Constant low
level pumping, the most protective bypass rule, led to the smallest increase in frequency and duration c
flow reversalsfig. 2). For example, the probability of a flow reversal increased by a maximum of 22
percentage points at a Freeptigcharge of 18,000%s, but the maximum increase in the proportion of
the day with reverse flow increased by only 2.9 percentage points at a Freeport discharge off0,000 ft
In contrast, in Deembeft April when most populations of juvenile salmon mnigrating through the
Delta, level 3 pospulseoperations led to sizeable increases in the frequency and duration of flow
reversalgfig. 6). Under these conditions, the probability of a flow reversal occurring increased from a
1 percentchance to a 9percenichance at Freeport flows of 22,0004t More importantly, at this
discharge, the proportion of each day with reverse flow increased by 12 percentage points from 0.019 t
0.146(fig. 6). These conditions would be expected to increase the popoffjuvenile salmon
entering Georgiana Slough.

Juvenile salmon are also present in the Delta, albeit at lower abundances, during other periods
with less restrictive bypass rules (e.g., May, and Octdb@rember). Under Octobddovember
bypass rules, thproportion of the day with reverse flow increased by a maximum of 34 percentage
points at a Freeport discharge of 16,086 ftfig. 3). Under level 3 postulse operations in May, the



proportion of the day with reverse flow is expected to increasentgxamum of 14.3 percentage points
at a Freeport discharge of 21,400t
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Sacramento River discharge at Freeport (ﬂ3/ s x 1000)

Figure 2. Effect of North Delta Diversion (NDDpassdischarge, probability of flow reversal, and proportic
of the day with rexftew for constant dewel pumpiragdefined itheNDD bypass rulds.the top panel,
the dotted line shows bypass discharge when diversion discharge is zero.



Oct. - Nov. Bypass Rules
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Sacramento River discharge at Freeport (ﬂ3/ s x 1000)

Figure 3. Effect of North Delta Diversion (NDD) on bypass discharge, probability of flow reversal, and |
of the day with reverse flo@dobei Noembears defined in thl®OD bypass rules. In the top panel, the
dotted line shows bypass discharge when diversion discharge is zero.



Level 1 Post-Pulse Operations (Dec-Apr)
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Sacramento River discharge at Freeport (ﬂ3/ s x 1000)

Figure 4. Effect of North Delta Diversion (NDD) on bypass discharge, probability of flow reversal, and |
of the day thireverse flow favel 1 posulse operatiomsDeemberApil as defined in the NDD bypass
rules In the top panel, the dotted line shows bypass discharge when diversion discharge is zero.



Level 2 Post-Pulse Operations (Dec-Apr)
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Sacramento River discharge at Freeport (ﬂ3/ s x 1000)

Figure 5. Effect of North Delta Diversion (NDD) on bypass, qisobabgity of flow reversal, and proportion
of the day with reverse flolefgel 2 postulse operations in @aberApil as defined in the NDD bypass
rules In the top panel, the dotted line shows bypass discharge when diversion discharge is zero.



Figure 6. Effect of North Delta Diversion (NDD) on bypass discharge, probability of flow reversal, and |
of the day with reverse flolefgel 3 postulse operations in ®@aberApil as defined in the NDD bypass
rules In the top panel, the dottedHmas bypass discharge when diversion discharge is zero.
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